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Optimal Selection of Weighting Matrices in
Integrated Design of Structures/Controls

M. Sunar* and S. S. Raot
Purdue University, West Lafayette, Indiana 47907

A methodology is developed for the optimal selection of state and input weighting matrices, Q and R,
respectively, of the linear quadratic regulator (LQR) method in the integrated design of structures/controls. An
optimal control problem is set up in such a way that design variables are the diagonal entries of Q and R; the
objective function is the trace of the solution matrix to the algebraic Riccati equation of the LQR method, P
matrix; and constraints are imposed on the closed-loop eigenvalues to satisfy minimum stability conditions for
the control system. The procedure finds the optimal diagonal Q and I? that enables the actively controlled system
to meet the prespecified stability and performance bounds. Furthermore, the resulting Q and R yield the
minimum possible performance index and hence the control effort is substantially reduced. The proposed
method is integrated with a substructure decomposition scheme which results in substantial savings on the
numerical computations with very little loss in the accuracy of the original system response. It is found that for
trusslike space structures, the proposed optimization scheme is mostly affected by the changes in the diagonal
terms of R and the changes in the velocity diagonal terms of Q of the controlled system. The method is expected
to be very useful for large-scale systems and is illustrated with the help of two example problems.

Nomenclature
A = system matrix
Ac\ = closed-loop system matrix
{A }k = set of internal degrees of freedom for the

&th substructure
B = input matrix
{B }k = set of boundary degrees of freedom for the

kih substructure
C = output matrix
Cd = damping matrix
fk = actuator force generated by the A:th substructure
G = gain matrix
gi — ith constraint function
{I}k = set of original internal degrees of freedom for

the kth substructure
J = quadratic performance index
K = stiffness matrix
M = mass matrix
P = solution matrix to
Q = state weighting matrix
R = input weighting matrix
r = number of substructures
s - number of substructures neighboring the kth

substructure
Tk = transformation matrix for the kih substructure
tr(P) = trace of P
u = input vector
HI = /th right eigenvector
Vj = jth left eigenvector
x = displacement vector
y = output vector
z = state vector
ZQ - initial state vector
X/ = /th closed-loop eigenvalue
X/M = /th closed-loop eigenvalue upper bound
M = ith performance bound corresponding to inputs
a/ = ith performance bound corresponding to states
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Introduction

W ITH the ever increasing requirements of stability and
performance characteristics imposed on systems, the

subject of actively controlled systems in general and structures
in particular has drawn much attention in recent years.1'2
Optimization of actively controlled structures using different
multiobjective optimization techniques was conducted by
Rao.3'4 When sufficient control energy is present, the closed-
loop system poles can be virtually placed anywhere in the
complex left-half plane by the active control method, hence it
is especially attractive for the vibration suppression of
lightweight flexible structures. In some cases, it may be advan-
tageous to combine the active control with the passive control
to improve the stability margin of the controlled system and
also reduce the control cost. There has been a steady increase
in research activities related to the integrated active and pas-
sive control design in the past few years.5'7

The linear quadratic regulator (LQR) method is a structured
control method that is often employed in the active control of
deterministic systems.8'9 The LQR method minimizes a
quadratic performance index with the constraints being the
equations of motion (EOM) of the system in state-space form.
The quadratic performance index provides a measure of total
system strain, kinetic and potential energies, and its minimum
value is dependent on the choices of the weighting matrices Q
and R. The LQR method requires only Q and R be semiposi-
tive definite and positive definite, respectively, and hence they
can be chosen from a wide range of possible candidates. Since
the choices of Q and R affect the control cost, it is crucial to
select these matrices to yield the minimum control cost while
the prespecified performance and stability criteria are satisfied.

Because of the importance of the proper selection of Q and
R, several works have appeared in the literature dealing with
the subject, but most methods are concerned with the pole
assignment.10'11 The relationships between the weights and
sensitivity were used by Athans12 and by McEwen and Looze13

to determine the proper weights. The weighting matrix selec-
tion based on satisfying input amplitude and variance con-
straints in a linear quadratic Gaussian (LQG) problem was
suggested by Makila et al.14 and Skelton and DeLorenzo.15 The
selection of weighting matrices in the definition of quadratic
performance index and its implication in control of structures
was discussed by Venkayya and Tischler.16 The choice of the
weighting matrices in the deterministic linear quadratic im-
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pulse (LQI) problems for continuous and discrete systems was
presented by Zhu and Skelton.17 Another weight selection
algorithm of LQR problems for robust pole assignment was
developed by Liebst and Robinson.18 The algorithm chooses Q
and R to place the closed-loop poles at a set of desired pole
locations. The selection of the weighting matrices with some
diagonal weights that achieve a specified pole location was
addressed by Ohta et al.19

Since it is neither practical nor feasible to consider the full
dynamic model of large systems, the decentralized control is
especially important in the active control of large flexible
structures. The concept of substructural controller design per-
mits the design of controllers at component level and makes
the global controller design of large flexible structures compu-
tationally attractive. A substructural control approach, called
the controlled component synthesis, was developed by Young9

in which an interlocking control concept was used to minimize
the motion of the nodes adjacent to the boundaries of sub-
structures. In another substructural control technique which
was presented by Pan et al.,8 the LQR method was applied at
the substructure level in an attempt to balance the interaction
forces between the substructures.

In this work, it is shown that the minimization of the
quadratic performance index for some choices of Q and R is
proportional to the trace of P matrix, the solution matrix to
the algebraic Riccati equation (ARE). Hence, if the trace of P,
tr(P), with the diagonal entries of Q and R taken as design
variables, is minimized, the resulting Q and R yield the mini-
mum of all the minimum quadratic performance indices. The
objectives of this work are then stated as follows: 1) to find the
minimum of all the minimum quadratic performance indices
and hence the minimum possible control cost for a system; 2)
to meet all the prespecified performance and stability bounds
required of the system; and 3) to integrate the procedure with
a substructural control technique to substantially save the com-
putational time.

A control optimization problem is formulated, the global
controller of the system is designed using the complete and
substructural models of the system, and the computational
advantage of the substructural model over the complete model
is noted.

Formulation of the Problem
Consider the following multiobjective control optimization

problem:
Minimize

subject to

z = Az+Bu,

Qijmm =
°max

j mm — — 2 ——
M/max

= Cz, u = -Gz

I, y = 1, . . . , 2/Z

I, y = 1 , . . . , /H

= l, ...9ng (1)

where 6# is the Kronecker delta, 2n and m are the degrees of
freedom (DOF) of the system in state space and number of
actuators in the system, respectively, and ng is the number of
constraints. If ofmax and tfmax denote the /th prespecified
performance bounds, they may be defined as

j0°y dt < o? = M/max (2)

The physical meaning of the problem set by Eqs. (1) and (2) is
that the root-mean-squared (rms) values of output states and
inputs are constrained. The rms constraints are usually of
interest in engineering problems. Such constraints may reflect

the safety limits of a structure, since deflections exceeding a
certain value will exceed the stress limitations of the structure
or exceed the linear elastic region causing the dynamic struc-
ture to behave in a nonlinear manner. Thus, the suggested
multiobjective control scheme has much practical significance.
The s.olution to the problem is given by

G=R~1BTP

where P is found from

PA

(3)

(4)

which is known as the ARE. The average value of J and /av in
the optimization problem can be proved to be proportional to
tr(JP) as follows: It is well known5 that

In In
J = z<fPzQ = TtPuZ2 + 2 (5)

where ZQ, z at t = 0, is assumed as ZQ = [z\Z2 • • m Z2n\- J*v is
found as

( f f 2n 2n 1 ") / f
/av= E*W +2 £ PijZtzA <L4 / <L4 (6)(Js l_ /=i u=i J )\ Js

where S denotes the surface enclosed by the vector ZQ. In
Eq. (6)

In 2n (* 2/7
V1 P ~2 H 2l — V P I T2 H ,4 —LjiiiZi Ctrl — ̂ jf^ii \ Zj u/1 — _

5 / =1 / = 1 J S i = l
(7)

where Vis the volume formed by ZQ. In Eqs. (6) and (7), if V
is the volume of a unit ball, for example, then S is the surface
defined by \\ZQ\\ = 1. Furthermore,

P 2n 2n P
£ PijZtZj cL4 = E Pij\ ZiZj (L4 = 0

J S i,j = 1 ij =1 J S

due to the divergence theorem. Lastly,

(8)

(9)

Hence Eq. (6) becomes
i 2n i

= — DP// = — tr(P) (10)2 / i / = i 2n

Thus the problem of Eq. (1) can be posed as follows: Minimize
tr(P), subject to

PA + A TP - PBR~1BTP + CTQC = 0

Qijmin = ———— $#, /, y = 1, . . . , 2/1

ij mm — — 2 ——
M/ma

I, j = 19 . . . 9

(11)

where the /th constraint function g/ places an upper bound on
the /th eigenvalue of the closed-loop system (i.e., the eigen-
value of Aci = A - BG). Hence g/ becomes

gi = X j f - X f e <0, i = l, . . . , 2 / i (12)

It can be shown that X/ depends on the choices of Q and R, and
hence the preceding optimization problem is well defined. The
characteristic polynomial of Ac\9 AAC\, is found as20

s)\l + QL(s)R-lLT(-s)\ (13)
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where s is the Laplace transformation variable and
L (s) = C(sl - A )~ 1B and AA (s) = \sl - A I . Note that the
characteristic polynomial of Ac\ is dictated by the choices of Q
and R. Equations (1 1) set a procedure that yields the minimum
possible quadratic performance index and meets the specified
performance and stability bounds by minimizing / with re-
spect to the diagonal terms of Q and R.

Design Sensitivity Analysis
Gradient calculations of the objective and constraint func-

tions with respect to the diagonal terms of Q and R are
performed as follows.

The eigenvalue problem of Ac\ is defined as

= \fUj, = \jVJ9 i, j = 1, . . . , 2n (14)

where X/(X/) are the eigenvalues (assumed as distinct), and u/
and Vj are the right and left eigenvectors of Ac\. After normal-
ization

U?Vj = vJUi = (15)

After some manipulation

= ,,T .

where
3Ad

dgj TBAd

= =

dp

"TTT (17>

and BI is the ith column of the B matrix. Furthermore,

where

and

IT dp dp .„I i ____ i ____ A _i_ fj/ f~^. — j
cl *\j-\ *\s~\ '̂ cl ' ^i ^"i

dp dp

(19)

(20)

which are Lyapunov equations for (dP/dQa) and (dP/dRn)9
respectively. In Eq. (19), C/ denotes the /th row of the output
matrix C.

Substructure! Controller Design for Flexible Structures
It is assumed that the flexible structure is decomposed into

r substructures, where the A:th substructure is neighbored by s
substructures. Note that in the subsequent discussions, the
subscript k refers to the kth substructure. Let {7}^ denote the
set of original internal DOF of the kth substructure, {#1}*
represent the set of boundary DOF between the kth and
(k + l)th substructures, and so on. The EOM of the kth
substructure can be represented as

Cdkxk = Dkuk (21)

where xk and uk denote the vectors of displacement and con-
trol input, respectively; and Mk, Cdk, Kk, and Dk denote the
mass, damping, stiffness, and input weighting matrices in the
configuration space, respectively. The matrices Mk, Cdk, Kk,
and Dk have to be summed properly to preserve the displace-
ment compatibility of the whole structure.

The EOM of the kth substructure, Eq. (21), can be rear-
ranged by grouping together the internal and boundary DOF
of the substructure. The internal and boundary DOF of a

substructure will vary depending on the surrounding substruc-
ture considered. Considering the kth substructure and its
neighboring (k + l)th substructure, the set of internal DOF is
given by [Ak] = {{/*}, [B2}9 . . . , ( B s ] ] k and the set of
boundary DOF by [Bk] = [ B i } k . Hence, the partitioned
EOM for the kth substructure can be stated as

MAA MAB

MBA MBB] k {XB) k

\CdAA CdAB\ (XA)
L CdBA CdBB\ k (XB) k

\KAA J^lf.0 =\DAA DAB](uJ 2

IKBA KBB\klxB)k \_DBA DBB\k(uB)k

By using the Guyan static condensation method, the follow-
ing relation can be written:

XB)k
= TkXBk (23)

where Tk is the transformation matrix for the kth substructure
while considering the interaction with the (k + l)th substruc-
ture. By defining proper sets for { A k } and \Bk}, the transfor-
mation matrices between the kth substructure and the other
substructures can be determined using Eq. (23).

The EOM of the kth substructure in state-space form are
given by

Bkuk = A 'kzk + Bkuk (24)

where Ak and Bk are the system and state-space input matrices,
respectively; uk is the vector of control input generated within
the kth substructure, and zk is the state vector for the kth
substructure defined as

=(xkxk]T= [xAkxBkxAkxBk}T

and also
(25)

(26)

where FBik is the actuator (controller) force generated by the
ith substructure surrounding the kth substructure. Note that
FBik denotes the actuator force passed from the previous itera-
tion. The input vector uk in Eq. (24) is found using the LQR
method as

uk = -Gkzk = -[R~lBTP]kZk (27)
where Pk satisfies the following ARE

PkA I + A 'kTPk - PkBkRk~ lBlPk + ClQkCk = 0 (28)

Recall that the input weighting matrix of the kth substructure
is defined as

-I" °{.Mk
lD (29)

where Dk is the input weighting matrix of the kth substructure
in the configuration space. Postmultiplying Eq. (29) by Eq.
(27) yields

(30)

In the current iteration, the actuator force which is generated
within the kth substructure to balance the interacting forces
from the surrounding substructures (and to suppress vibra-
tion) can be determined using Eq. (30) as

A = * j = [-
kJ

MkM^DkGk]zk = [-DkGk] (31)
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where fAk and fBk are the actuator forces at the internal and
boundary DOF of the kth substructure, respectively. By defin-
ing proper sets of {A }k and (B ] k for the kth substructure and
each of its surrounding substructures, Eq. (23) can be used to
condense the actuator force, fk in Eq. (31), into the boundary
DOF of the surrounding substructures. Consequently, Eq. (31)
can be expressed as

r ,= [-DkGkTk]

where

(32)

(33)

Note that fBki which is the actuator force generated by the
kth substructure and condensed into the boundary DOF of the
/'th surrounding substructures, is not same as FBki( — FBik)
since they are obtained at two different iterations. At the final
iteration, however, they are the same.

The following multiobjective optimization control problem
is now posed using the substructural control method just
developed:

Minimize

k=l
[tr(P,)]

subject to
PkAk + AT

kPk - PkBkRk

1

+ CfekCk = 0
k = 1, . . . , r

*, £ = 1 , r

2
M/max

* = !,...,.

0, , ng (34)

where 2nk and mk denote the DOF in state space and number
of actuators for the kth substructure, respectively. The nu-
merical procedure to solve Eqs. (34) is given as follows.

I) Initially set Q0 and R0.
II) / = -1.
III) i = i + 1 and Q = Q/, R = R f .

1) £ = 0
2) /, = <)
3) k = k + 1
4) Solve the ARE for the kth substructure accord-

ing to the substructural control scheme just discussed. Note
that (Qk)i and (Rk)t are in the subspace of Q/ and Rf and are
subject to the constraints as imposed by Eqs. (34).

5) (A), =
6) / /=// +
7) If k < r go to step 3. Otherwise continue to

step IV.
IV) Assemble the global closed-loop system and construct

the constraint functions (#,)/, j = 1, . . . , ng.
V) At the /th step of optimization, the objective and

constraint functions are // and (g/)/> 7 = 1» • • • > ng, respec-
tively. Go to step III until the convergence of the optimization
method.21

/

/

/

Feasible Region

Fig. 2 Optimum point for spring-mass system.

In this work, the ARE is solved by the technique described
by Kleinman.22 The optimization method used in step V is
the modified method of feasible directions developed by
Vanderplaats.21

Numerical Examples
Mass-Spring System

The 2-DOF mass-spring system shown in Fig. 1 is first used
as a simple example to clearly demonstrate the control opti-
mization procedure developed earlier. Q is taken as a full
matrix, and it is shown that only the diagonal terms of Q have
dominant effect on the optimization procedure.

The EOM of the system is written as
mx + kx = u (35)

After converting Eq. (35) into the standard state-space form,
vstem and inout matrices A and B are found as

After converting Jbq. (3:>) into me standard state-spa
the system and input matrices A and B are found as

A =
0 1

-- 0m
B =

Q and R are taken as

q\\Q \q\\
\_q\2

R =r

(36)

(37)

The control force, u in Eq. (35), is defined as
u=-glx-g2x (38)

where the control gain matrix G = [gi g2] is given by

G=-BTPr (39)

After solving the ARE, the optimization procedure is set as
follows:

Minimize

subject to
= tr(P) =

#22 <: 0.1 r <0.1 (40)

Fig. 1 Spring-mass system.

where the constraint is imposed such that the real parts of the
closed-loop eigenvalues of the system are smaller than or equal
to - 1. In obtaining Eqs. (40), it is assumed that q\\/(k2r) < 1.
This is generally true, since the value of k for a spring (or a
bar) will be very large. Note that, in Eqs. (40), the value of the
first term in/, ArV^r, will usually be much higher than that
of #12, and the constraint g is only the function of #22 and r.
Hence, the optimization process will be heavily dependent on
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Fig. 3 45-bar truss.

#22 and r. This trend is also seen in the next example problem.
A bar with a cross-sectional area of A - 1 in.2 and a length

of L = 20 in. is used to further illustrate the observations just
made. The material properties are chosen as Young's modulus
E = 107 psi and mass density p = 0.1 lb/in.3 Hence, the spring
constant k = AE/L = 500,000 lb/in. and mass m = pAL = 2
Ib. Using these values, the solution to the optimization prob-
lem given by Eqs. (40) is found and shown in Fig. 2. It can
easily be seen from Fig. 2 that when the values of q22 and r
decrease, the value of/decreases. Consequently, the optimal
design point lies at the lower bound of #22» which is marked as
point A in Fig. 2.

45-Bar Truss
The 45-bar truss shown in Fig. 3 is used as a large-scale

problem to further illustrate the control optimization proce-
dure using complete and substructural models of the structure.
The truss is made of aluminum with E = 107 psi and p = 0.1
lb/in.3. It has 72 DOF in state space. The actuators are placed
at nodes 7, 8, 9, 10, 13, 14, 18, and 19. The control forces can
be generated in both x and y directions at these nodes. The Q
and R, whose diagonal entries are taken as design variables,
are diagonal matrices with sizes 72 x 72 and 16 x 16, respec-
tively. Without loss of generality, the performance and stabil-
ity requirements of the closed-loop system are stated such that
all of the diagonal terms of Q and R are to be greater than or

equal to 0.1, and the real parts of all of the closed-loop
eigenvalues of the structure must be smaller than or equal
to - 1. Hence, for this problem, the number of design vari-
ables is 88 and the number of constraints is 72. The truss is
decomposed into six substructures for the substructural con-
trol method. The cross-sectional areas of all members of the
truss are taken as 2 in.2.

As a first attempt, at the initial design, the Q and R matrices
are set to 105 x IQ and IR, where IQ and IR are the identity
matrices with proper dimensions. The initial design (the initial
choices of Q and R) has yielded the objective function [tr(P)]
values of 1.45587 x 1011 and 9.05979 x 1010 for the complete
model and substructural model, respectively. At the final iter-
ation of the optimization, the objective function values have
been noted as 5.50984 x 109 and 2.36725 x 109 for the com-
plete and substructural models, respectively.

The displacement of the truss at node 20 in the y direction
for both complete and substructural models at initial and final
designs is shown in Figs. 4-7. The disturbance forces in the
numerical simulations are taken as unit impulse and step
forces. The actuator response at node 7 in the x direction
resulting from the unit impulse force for both models at initial
and final designs is also shown in Figs. 8 and 9. It is a
straightforward task to show by Laplace or Fourier transfor-
mations that the unit step function has frequency content.
Hence, due to the nature of Guyan reduction scheme, some

xio-4

Complete Structural Model

Substructural Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

Fig. 4 Displacement of 45-bar truss at node 20 in y direction at initial
design, response to unit impulse; complete structural model ——,
substructural model • • • • • • .

Complete Structural Model

Substructural Model

-2L-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)
Fig. 5 Displacement of 45-bar truss at node 20 in y direction at final
design, response to unit impulse; complete structural model ——,
substructural model • • • • • • .
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xlO-6

Complete Structural Model

Substructure! Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)
Fig. 6 Displacement of 45-bar truss at node 20 in y direction at initial
design, response to unit step; complete structural model ——, sub-
structural model • • • • • • .

Complete Structural Model

Substructure! Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)
Fig. 8 Actuator force of 45-bar truss at node 7 in x direction at initial
design, response to unit impulse; complete structural model ——,
substructural model • • • • • • .

xlO-6

Complete Structural Model

Substructural Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Fig. 7 Displacement of 45-bar truss at node 20 in y direction at final
design, response to unit step; complete structural model ——, sub-
structural model . . . . . . .

Complete Structural Model

Substructural Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Fig. 9 Actuator force of 45-bar truss at node 7 in x direction at final
iesign, response to unit impulse; complete structural model ——,
substructural model • • • • • - .

discrepancy between the two models in the steady-state value
of the structure response to the unit step force is expected.
This can be seen in Figs. 6 and 7. However, the numerical
experience with the substructural model and the simple obser-
vations made from Figs. 4-9 lead to the conclusion that the
proposed multivariable control optimization scheme can be
applied to most engineering problems.

As a second attempt, different initial values for Q and R
are used to test the robustness of the scheme in reaching an
optimum design from a different starting design. The robust-
ness in this regard is expected to be affected by the optimiza-
tion method used to solve the problems defined by Eqs. (11)
and (34). At the initial design, the Q and R matrices are taken
as Q// = 105, / = !,..., 36; e,/ = 106, i = 37, . . . , 54; Q« = 104,
/ = 55, . . . , 72; I?//= 10,.1 = 1, • • • , 8; #// = !, i=9 , . . . , 16.
For these initial choices of Q and R, the objective function
values for the complete and substructural models have been
noted as 4.19497 x 1011 and 3.76526 x 1011, respectively. At
the final designs obtained by the optimization algorithm, the
objective functipn values have been recorded as 2.14690 x 1010

and 4.32325 x 109, respectively. Although the final designs
obtained for both models with two different initial choices of
Q and R slightly differ from each other, substantial savings
in the objective function [tr(P)], and, hence, in the control

effort have been achieved through the multivariable control
optimization.

Three basic observations can be made from the optimiza-
tion values and Figs. 4-9. First, it can be noted that a substan-
tial saving in the value of the performance index and, hence,
in the control effort is made through control optimization.
Second, the use of the substructural control method greatly
reduces the computational cost of the control optimization
process without much loss on the accuracy of the system
response. At the first attempt, the CPU times on a GOULD
PN9080 machine for the control optimization process using a
complete model and a substructural model have been noted as
35 h + 40 min + 41 s and 4 h + 30 min '+ 32 s, respectively.
Hence the substructural control method resulted in almost 10
times less computational cost than the complete model. Third,
for trusslike structures, the control optimization problem is
most sensitive to the diagonal terms of Q corresponding to the
velocity states of the truss and the diagonal terms of R.

Conclusion
An optimality-based strategy is presented to reduce the con-

trol cost of a system and to simultaneously meet the perfor-
mance and stability bounds imposed on the system. A sub-
structural control method in which the global controllers of
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large flexible structures are designed at the substructure level is
also presented to reduce the computational cost involved with
the control optimization process. It is shown that the mini-
mization of the quadratic control effort is proportional to that
of tr(P). Analytical expressions are derived to compute the
first derivatives of tr(P) and those of the closed-loop eigenval-
ues with respect to the diagonal terms of the Q and R matrices,
which are taken as design variables in the control optimization
process.

It is clear from the foregoing discussion and illustrative
examples that great savings in the control effort are possible
through the approach proposed in this work. The substruc-
tural control method substantially reduces the computational
cost of control optimization of large flexible structures. It is
found that the quadratic performance index is most sensitive
to the changes in the diagonal terms of R and those of Q
associated with the velocity states. The approach is quite gen-
eral and can be applied to any system with specified perfor-
mance and stability bounds. The proposed method is expected
to be particularly beneficial for large flexible structures.
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